
For IBIS Advanced Technology Modeling WG

Proxy Based Back Channel Flow

Wei-hsing.Huang@SPISim.com
Ver. 20191118

1

For IBIS Advanced Technology Modeling WG

Overview:

2

• Assumptions

• Motivation

• Features

• Example flow

• Notes

• Example codes:
http://www.spisim.com/support/ticket/IBISATM/ProxyBackChannelTxRx.zip

http://www.spisim.com/support/ticket/IBISATM/ProxyBackChannelTxRx.zip

For IBIS Advanced Technology Modeling WG

Assumptions:

3

TX/RX AMI model developer knows RX/TX AMI “binary” model’s

capabilities and training protocols etc. (Proprietary API level is fine)

For IBIS Advanced Technology Modeling WG

Motivation:

4

• Avoid using file based data exchange:
o File IO is not efficient

o Error prone due to e.g. possible IO buffering/delay

• No IBIS-AMI spec. changes needed:
o Work with existing IBIS-AMI spec.

o Work on existing or even order EDA tool

• More efficient and flexible:
o Direct data exchange/training between Tx and Rx .dlls/.sos

o Freedom to define any training required proprietary API functions

o Easier debugging/development process

For IBIS Advanced Technology Modeling WG

Features:

5

• File IO twice only:
o Once for TX and RX at the very beginning

o Once for TX and RX when training is done

• “Proxy” based “coupling”:
o RX (.dll/.so) loads TX (.dll/.so)

o Subsequent iterative/proprietary function calls between these two only
o Total transparent to EDA tool/simulator (it does not know this is happening)

• Make use of existing mechanism:
o OS System’s username, temp folder etc using standard “getenv” etc

o IBIS-AMI spec’s DLL_ID and DLL_PATH

For IBIS Advanced Technology Modeling WG

Example Flow: OP. Mode

6

• Two op-modes:
o Normal operation (non-training) mode

▪ Tx/Rx need to have settings ready (e.g. default values or config. file)

o Training mode
▪ For training and generate settings (config. file) when done

o Training protocol defined by TX or RX binary model provider

can specify a common AMI parameter for this purpose
▪ e.g.:

For IBIS Advanced Technology Modeling WG

Normal Mode:

7

• TX AMI and RX AMI:
o Read “config. setting“ file from where .dll/.so is located

o If not found, use default values or report fatal errors.

o Initialize EQ using these values

• EDA tool:
o Perform normal channel simulation just like most of the cases

o AMI_Init->(one or more AMI_GetWave)->AMI_Close

o Nothing special in this mode!

For IBIS Advanced Technology Modeling WG

Training Mode: TX

8

• TX AMI:
o Delete existing “config. file“ if found

o Become a “Pass-Through”
o So that RX AMI will see un-equalized channel response later

o Generate a file (First File-IO):
o Obtain its own info using DLL_ID and DLL_PATH

o Obtain process ID info using e.g. GetCurrentProcessId()

o Obtain user name and a common path using e.g “getenv”

o Using OS environ. variables such as “username”, “temp”, “LocalAppData”

o These values are common to all processes on this PC/OS

o Store these info. to a file specified on next slide:

o DLL_PATH/DLL_ID.dll/.so (i.e. path to this TX .dll/.so)

o ami parameters received from EDA tool

For IBIS Advanced Technology Modeling WG

Training Mode: TX

9

• Write to this file (colored text are variables):
o E.g. TEMP/USERNAME_PROCID_DLLID_TIMESTAMP.txt

o E.g. /tmp/whuang4_ 40228_RX_AMI1_2019103118000000.txt

o Explanations:
o TEMP: so that RX know where to find this file

o USERNAME: for differentiation in case this is a multi-user server

o PROCID: process ID, for differentiation in case multi-treaded or running >1 instance of EDA tools

o DLLID & TIMESTAMP:

o for differentiation in case when multiple TX-RX pairs are involved

o for differentiation in case there are old/left-over file (e.g. timing tolerance < 5 sec.)

o see next slides for “Heuristic” search algorithm

o RX AMI should be able to find this file by itself!
o RX knows: TEMP/USERNAME_PROCID_DLLID_TIMESTAMP.txt
o If there is only one such file (i.e. one pair TX-RX), DLLID is irrelevant.

For IBIS Advanced Technology Modeling WG

Multi TX-RX pairs scenarios:

10

• Use TimeStamp for heuristic search
o Tx-Rx pairs can be identified if EDA tool call them in this order:

▪ Txi, Rxi, Txj, Rxj, Txk, Rxk… or

▪ Txi, Txj, Txk, Rxi, Rxj, Rxk

o These ordering should cover

most of the cases!

o Using “oldest” timestamp, Rx

will find corresponding Tx

o Once found, Rx will delete

corresponding Tx’s file.

For IBIS Advanced Technology Modeling WG

Training Mode : RX

11

• RX AMI:
o Delete RX’s existing “config. file“ if existed

o Identify the file upstream TX has created during its AMI_Init
▪ Fatal error if not found.

o Parse that file and obtain these info.:
▪ Path to the TX .dll/.so

▪ ami parameters that TX saw initially

▪ delete or rename this file (to support multi TX/RX pairs scenario)

o Load the TX AMI .dll/.so (proxy pattern)

For IBIS Advanced Technology Modeling WG

Training Mode: RX

12

• At this point:
o RX has un-equalized channel response (1st TX was a pass-through)

o TX (2nd instance) has been loaded by this RX

o RX has ami parameters TX should see (pass that to TX!)

o RX has RX’s ami parameters from EDA tool

o RX and TX know proprietary APIs methods available to them two

• Start training:
o Iteration between TX and RX

▪ Developer decides this should happen in RX’s AMI_Init or AMI_GetWave

o TX can train RX or vice versa right here
▪ They are “dancing” together, only themselves need know who is leading…

▪ It’s the 2nd instance TX which RX is training or being trained.

For IBIS Advanced Technology Modeling WG

Training Mode: RX

13

• When training is done:
o RX save optimized config. settings to a file where RX.dll is located

o RX tell TX to save its optimized settings where TX.dll is located

o RX release TX .dll/.so (2nd instance) it has loaded

• EDA proceed as normal operation:
o RX release memory when its AMI_Close is called.

o “Pass-through” TX (1st instance) release memory in its AMI_Close

o EDA tool does not know what has just happened between TX and RX!

• Training mode finished!
o Now TX/RX can operate in “Normal” mode.

For IBIS Advanced Technology Modeling WG

Notes:

14

• Versioning TX/RX .dll
o So that compatible version can be trained together.

• Be careful about “static” variables:
o They will be seen in the same process, across different .dlls

• Repeater(s) are present in the channel?
o This flow should still work if they are LTI

o This flow may NOT work if one or more of them are NLTV (non-LTI)
▪ In this case, channel response RX received is not useful even though

1st TX is a pass-through.

▪ Only EDA tool can arrange proper calling order along the channel

For IBIS Advanced Technology Modeling WG

Notes: Training Modes

15

• TX .dll/.so has 3 operation modes:
1. Normal mode

2. Training mode & Pass-through
o This is default settings in training mode

o When TX is loaded by EDA tool, it is in this mode (1st Tx Instance)

3. Training mode & Optimization
o This will happen in API defined optimization functions

o When Tx is loaded by Rx (2nd Tx Instance), Tx will be in this mode

For IBIS Advanced Technology Modeling WG

Notes: Mixed 32-bit/64-bit dll?

16

• 32/64 dll can’t be mixed without advanced handling
See:

• https://social.msdn.microsoft.com/Forums/en-US/06176268-79b1-4b2b-a981-eba89b578949/mixing-32-and-64-bit-code?forum=netfx64bit

• https://stackoverflow.com/questions/9292345/mixing-32bit-and-64bit-managed-assemblies

• In such case, PROCID will be different

• This will still work for single-threaded case:
• TEMP/USERNAME_PROCID_DLLID_TIMESTAMP.txt

https://social.msdn.microsoft.com/Forums/en-US/06176268-79b1-4b2b-a981-eba89b578949/mixing-32-and-64-bit-code?forum=netfx64bit
https://stackoverflow.com/questions/9292345/mixing-32bit-and-64bit-managed-assemblies

For IBIS Advanced Technology Modeling WG

EDA Expertise in Signal, Power Integrity & Simulation

17

