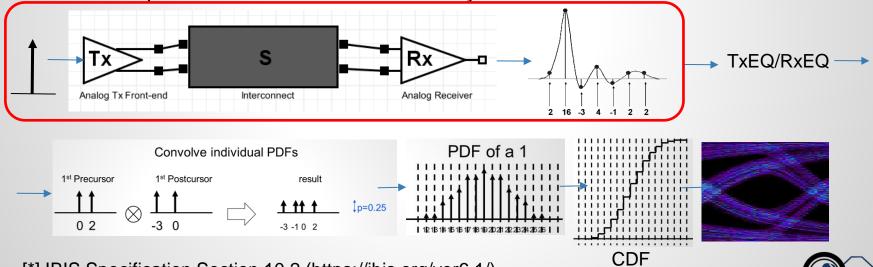
Study of DDR Asymmetric Rt/Ft in Existing IBIS-AMI Flow

DesignCon IBIS Summit Santa Clara, USA February 1st, 2018

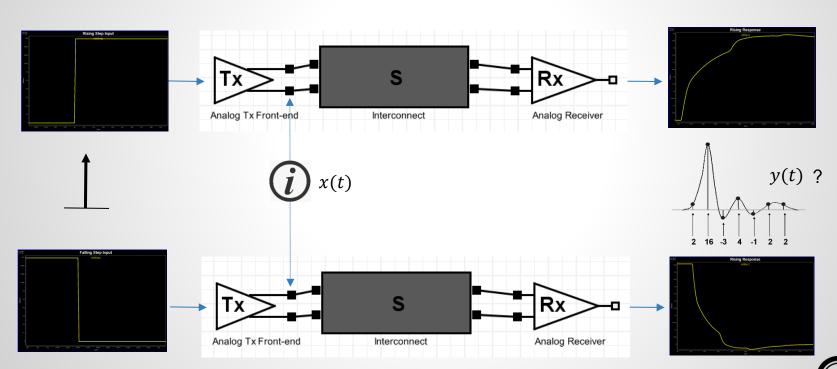
Wei-hsing "Michael" Huang, SPISim Wei-hsing.Huang@spisim.com Wei-kai Shih, SPISim Wei-kai.Shih@spisim.com

Agenda:

- Motivation
- Background
- Asymmetric Rt/Ft
- AMI_Init
- AMI_GetWave
- Summary
- Q & A


Motivation

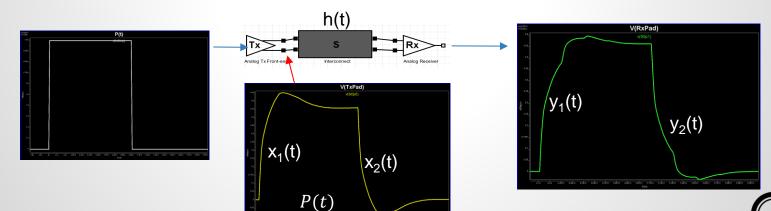
- Existing AMI reference flow is for differential:
 - o e.g. SERDES, centered around V = 0.0
 - Symmetric rise-time (Rt) /fall-time (Ft) mostly
- Can it be used for single-ended?
 - o e.g. DQ or DDR, centered around V= VRef
 - Asymmetric Rt/Ft
- Assumption: no major flow change
 - EDA Companies have different opinions
 - No reference flow change is being proposed so far...


Background:

- Statistical AMI flow: [*]
 - "Calibration" is performed before statistical/AMI computation
 - Impulse Response for analog + channel (Linear Time Invariant, LTI)
 - Samples -> PDF -> CDF -> BER/Eye

Asymmetric Rt/Ft to Impulse:

• Impulse resp. $\delta(t)$ is usually calculated from dU(t)/dt:

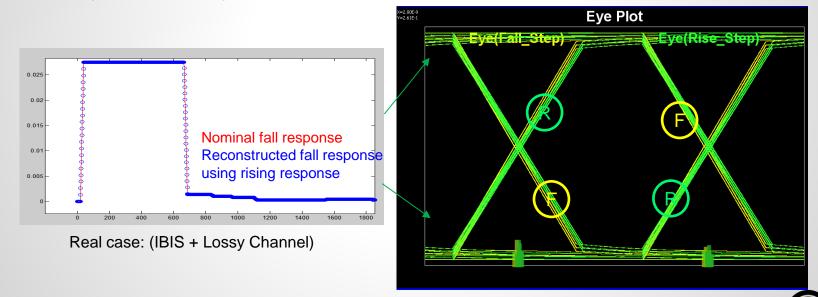


Asymmetric Rt/Ft to Impulse:

Linear transform between Rt/Ft:

o Rise: $y_1(t) = x_1(t) * h(t)$ Fall: $y_2(t) = x_2(t) * h(t)$

- o Fall: $x_2(t) = x_1(t) * Xform(t) \Rightarrow y_2(t) = y_1(t) * Xform(t)$
- Simulator knows $x_1 \& x_2$, thus Xform(t). It can then reconstruct either y_1 or y_2 from y_2 or y_1 with Xform(t) used in AMI_Init. (x_1, x_2 does NOT include EQ)
- DC info disappeared during differentiation (to get impulse response). Has gap!
 A new parameter has been proposed to address this gap.


Example:

Matlab/Octave pseudo-code:

```
% Generate rise and fall ramp of different slew rates
clc;
cleár:
time1 = (-1:1:5)';
ustp1 = time1>=0:
                                                                                            0.8
xstp = time1.*ustp1;
                                                                                            0.7
time = (-1:1:2)':
ustp = time>=0;
                                                                                                                Rise step response
ystp = time.*ustp;
                                                                                                                Fall step response (inverted)
mlen = 10:
                                                                                            0.3
rstp = onés(mlen, 1);
                                                                                            0.2
rstp(1:size(xstp,1), 1) = xstp / 5;
fstp = ones(mlen, 1);
fstp(1:size(ystp,1), 1) = ystp / 3;
                                                                                                                   Nominal fall response
% Convert to impulse
rimp = diff(rstp);
                                                                                                                   Reconstructed fall response
fimp = diff(fstp);
                                                                                                                   using rising response
% Nominal rise and fall pulse response
pulse=zeros(100,1);
                                                                                           0.6
pulse(20:40,1)=1;
rpuls=conv(rimp, pulse);
fpuls=conv(fimp, pulse);
                                                                                           0.4
% Reconstruct fall pulse using XForm
plen =size(rpuls, 1);
xpuls=real(ifft(fft(fimp, plen) ./ fft(rimp, plen) .* fft(rpuls)));
% Plot them together
                                                                                                     20
                                                                                                                                           100
time=[1:plen];
plot(time, fpuls, 'r-', time, xpuls, 'bo');
```

Asymmetric Rt/Ft to Eye:

- Construct different eyes portions using eyes generated by rise response and fall response (different slew rate)
 - Eye will be asymmetric as well.

ISI Eye Construction with a Tree Structure

3	2	1	Cursor (0)	-1
0	0	0	1	0
1	U			
0	4			
1	l			
0	0	1		
1	U			1
0	1			
1				

Let $V_n(ab)$ be the contribution of ISI from the nth pre-cursor edge when the nth pre-cursor=a and (n-1)th pre-cursor=b, i.e., the nth pre-cursor edge is an $a \rightarrow b$ transition

When 2nd pre—cursor logic value = 0, cursor logic value = 1, all possible values for the accumulated ISI from 2nd and 1st pre—cursors can be put into a row vector : $[V_2(00) + V_1(01), V_2(01) + V_1(11)]$. There are two elements in the vector due to two possible values of the 1st pre-cursor

Extending to the 3^{rd} pre-cursor: When 3^{rd} pre-cursor =0, there are 4 possible accumulated ISI values

$$[V_3(00) + V_2(00) + V_1(01), V_3(00) + V_2(01) + V_1(11)]$$
 and $[V_3(01) + V_2(10) + V_1(01), V_3(01) + V_2(11) + V_1(11)]$

Example with Alternating Bit Pattern

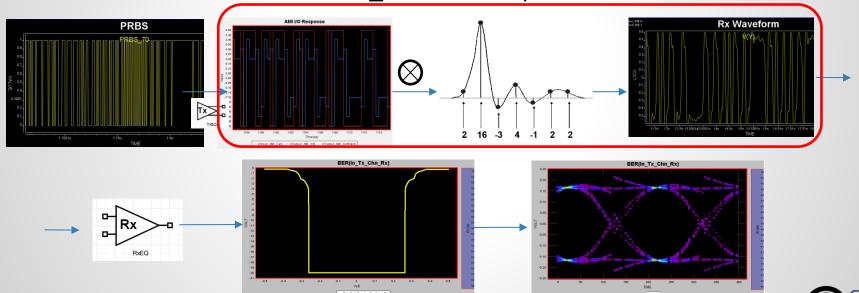
Recursive Algorithm for ISI Eye Construction

n	n-1	1 n-2	Cursor (0)	
0	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	
1				
0	4	XXXXXXXX		
1				

 $W_n(ab)$: row vector consisting all possible values of the accumulated ISI from the nth pre—cursor to cursor when logic value of the nth pre—cursor is a and logic value at cursor is b

$$\begin{split} W_1(01) &= [V_1(01)] \\ W_1(11) &= [V_1(11)] \\ W_2(01) &= [V_2(00) + V_1(01), V_2(01) + V_1(11)] \\ W_2(11) &= [V_2(10) + V_1(01), V_2(11) + V_1(11)] \\ &\dots \dots \dots \\ W_n(01) &= [V_n(00) + W_{n-1}(01), V_n(01) + W_{n-1}(11)] \\ W_n(11) &= [V_n(10) + W_{n-1}(01), V_n(01) + W_{n-1}(11)] \end{split}$$

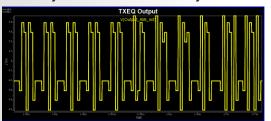
PDF Computation for ISI Eye

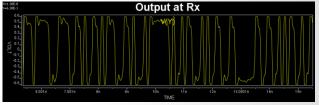

Waveform value	PDF of the waveform value	Notes
$V_n(ab)$	$P_{V_n(ab)}(V) = \delta(V - V_n(ab))$	
$W_1(01)$	$P_{W_1(01)} = P_{V_1(01)} \ P_{W_1(11)} = P_{V_1(11)}$	
$W_n(01)$	$P_{W_n(01)} = \frac{1}{2} P_{W_{n-1}(01)} \otimes P_{V_n(00)}(V) + \frac{1}{2} P_{W_{n-1}(11)} \otimes P_{V_n(01)}$	
$W_n(11)$	$P_{W_n(11)} = \frac{1}{2} P_{W_{n-1}(01)} \otimes P_{V_n(10)}(V) + \frac{1}{2} P_{W_{n-1}(11)} \otimes P_{V_n(11)}$	

This is a Dirac delta when there is no jitter (ISI takes discrete value without jitter) With jitter the Dirac delta will spread out into a continuous distribution. But the recursive relation remains same.

Background:

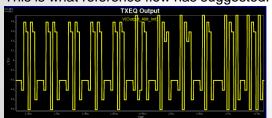
- Time-domain AMI flow:
 - Analog + channel's responses to one block of bit-sequence
 - Convolve with Tx's AMI_GetWave output then send to Rx's AMI

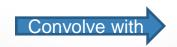


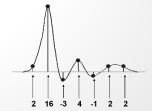

Asymmetric Rt/Ft to GetWave:

Result will be OK if:

- Bit-sequence waveform at Rx is simulated result from bit-sequence of output at TxEQ
- This may not be the case mostly as it is not "standard" and will take longer to run.







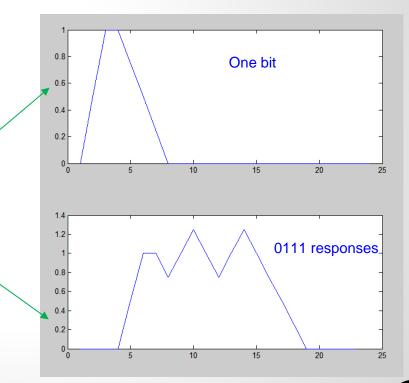
Result will have errors if:

- Final waveform at Rx is from one bit simulated impulse response convolved with bit-sequence from TxEQ
- · This is what reference flow has suggested.

Asymmetric Rt/Ft to GetWave:

- Problem: Which impulse to use? From Rise or Fall?
- Problem: Using a full P(t) will still result in errors:
 - Bit 011 using convolution with symmetric Rt/Ft

Glitch will happen for asymmetric Rt/Ft



Need to use Rise/Fall step separately then superimpose.

Asymmetric Rt/Ft to GetWave:

Matlab/Octave pseudo-code:

```
% Generate one-bit pulse of different Rt/Ft
clc;
clear:
time = (0:1:2)';
ustp = time>=0;
xstp = time.*ustp;
time1 = (0:1:4)';
ustp1 = time1>=0;
ystp = time1.*ustp1;
xlen = size(xstp, 1);
ylen = size(ystp, 1);
mlen = xlen + ylen;
bit1 = ones(mlen, 1);
bit1(1:xlen, 1) = xstp / 2;
bit1(xlen, 1:xlen + ylen, 1) = 1 - ystp / 4;
% Bit sequence 0111
      = size(bit1, 1) / 2;
blen = 4 * ui:
bseq = zeros(blen, 1);
bseq(1 * ui) = 1;
bseq(2 * ui) = 1;
bseq(3 * ui) = 1;
% Form responses using convolution
resp = conv(bit1, bseq);
% Plot them together
subplot(2,1,1);
plot(padarray(bit1, blen, 'post'));
subplot(2,1,2);
plot(resp)
```


Summary:

Existing IBIS-AMI flow:

- Can be used for driver with asymmetric Rt/Ft.
- Asymmetric effects can be handled within "smarter" EDA tools.
 - Assuming AMI model does not behave differently to rise/fall responses.

Statistical flow:

- Linear transform between rise/fall can be applied to model's response.
- Use rise and fall response to construct eye.
- Tree/sequence based superposition will eliminate these glitches.

Time-domain flow:

- Convolution using one bit pulse will have errors.
- Using step reponse based superposition may avoid such errors.

